Josephon.m
function dx=Josephon(t,x); % Josephon方程 % dx=Josephon(t,[x;y;b]) % t-时间,x,y-为自变量,b-为如下方程所示的参数 % eg: dx=Josephon(10,[0;0;.33803]) % % 方程如下: % θ''+G*θ'+sinθ=I+A*sin(ωt)+αsin(βωt) % 变化: % dx=y % dy=-G*y-sin(x)+I+A*sin(w*t)+a*sin(b*w*t) % % Example(Poincare图象): % [T,Y]=ode45('Josephon',[0,1000],[0;0;.33803]); % plot(mod(Y(:,1),6.283),Y(:,2),'.','markersize',2); % % Author's email: ustb03-07@yahoo.com.cn % G=.7;A=.4;w=.25; a=0.0125;I=.905; % b=.33803; b=x(3); dx(1,1)=x(2); dx(2,1)=-G*x(2)-sin(x(1))+I+A*sin(w*t)+a*sin(b*w*t); dx(3,1)=0;
|

jose_ly.m
function ly=jose_ly(b,k) % the largest lyapunov exponent of josephson % k 迭代步数,b 参数 % 方程如下: % θ''+G*θ'+sinθ=I+A*sin(ωt)+αsin(βωt) % 变化: % dx=y % dy=-G*y-sin(x)+I+A*sin(w*t)+a*sin(b*w*t) % % Example: % ly=jose_ly(0,800) % % Author:LDYU % Author's email: ustb03-07@yahoo.com.cn % d0=1e-8; ly=0; lsum=0; x=[0;2;b]; x1=[d0;2;b]; for t=1:k [T1,Y1]=ode45('Josephon',[t-1,t],x); [T2,Y2]=ode45('Josephon',[t-1,t],x1); x=Y1(end,:); x1=Y2(end,:); d1=norm(x-x1); x1=x+(d0/d1)*(x1-x); lsum=lsum+log(d1/d0); end ly=lsum/k;
|
>> help jose_ly
the largest lyapunov exponent of josephson
k 迭代步数,b 参数
方程如下:
θ''+G*θ'+sinθ=I+A*sin(ωt)+αsin(βωt)
变化:
dx=y
dy=-G*y-sin(x)+I+A*sin(w*t)+a*sin(b*w*t)
Example:
ly=jose_ly(0,800)
Author:LDYU
Author's email: ustb03-07@yahoo.com.cn
>> ly=jose_ly(0,800)
ly =
0.0522
josel.m
% the largest lyapunov exponents of josephson % % Author's email: ustb03-07@yahoo.com.cn % clear Z=[]; for b=linspace(0,1.5,50) Z=[Z b+i*jose_ly(b,300)]; end plot(Z,'-') title('Josephon最大Lyapunov指数图'),xlabel('b'),ylabel('lyapunov') grid on
|
>> josel